
|    | — NASA                 | TECHNICAL TRANSLATION                                         | NASA TT F-11,477                                                                                             |
|----|------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
|    | _                      | Page One                                                      | Title                                                                                                        |
| 5  | 477                    | RATE OF NUCLEATION COVEHERN DISSOCIATION REACTION             | EW <b>SQLID</b> PHASE IN THE THERMAL<br>OF MAGNESIUM CARBONATE                                               |
| 10 | T F-11,                | Stanislaw Bretsznajder, Jadw                                  | iga Leyko and Aleksander Blum                                                                                |
| 15 | NASA TI                |                                                               |                                                                                                              |
| 20 |                        | Fazy Stalej W Reakcji Dys<br>Magnez                           | geT <b>gorge</b> mia Sie Zarodkow Nowej<br>ocjacji Termicznej Weglanu<br>owego''<br>35, pp. 1477-1486, 1961. |
| 25 |                        | ROCZHIKI GHOMII, VOI.                                         | (4")                                                                                                         |
| 30 | <br><br><br>           | 8 <u>v</u>                                                    | 68 15857 (ACCESSION NUMBER) (THRU)                                                                           |
| 35 | <del>-</del><br>-<br>- | TTY FORM                                                      | (CATEGORY)                                                                                                   |
| 40 |                        | GPO PRICE \$                                                  |                                                                                                              |
| 45 |                        | Hard copy (HC) 3.00                                           | <del></del>                                                                                                  |
|    |                        | Microfiche (MF)65                                             | <del></del>                                                                                                  |
| 50 |                        | # 653 July 65  NATIONAL AERONAUTICS NA WASHINGTON, D. C. 2054 | SA SPACE ADMINISTRATION JANUARY 1968                                                                         |
|    |                        |                                                               |                                                                                                              |
|    | Even                   | Ro                                                            | man odd                                                                                                      |





where J' is a quantity proportional to the nucleation rate I, and  $k_0$  is the constant from equation (1) in the vicinity of the state of equilibrium.\* On the basis of general equations of the theory of nucleation, the following relation was found: Cover Page Title  $\lg J' = -A \frac{1}{\lg^2(p/p_0)}$ (5)10 This relation expresses the existence of a simple proportion between the log /1479 of the nucleation rate and the inverse square of the log of the supersaturation. 15 The relation derived was applied to calculations of results of earlier experiments on the decomposition kinetics of calcium carbonate and the reverse reaction, i.e., the action of carbon dioxide on calcium oxide. It was found that on graphs of log J' vs. 1/log2 (p/p0), the points corresponding Cover Page Source to individual measurements of the given experiment fall on straight lines. This fact constitutes a confirmation of the validity of the derived formula and of the assumptions inherent in the adopted mechanism of formation of the new solid phase. It was also found that the undoubtedly complex phenomenon of nucleation involving a simultaneous transformation of the crystal lattices takes place in accordance with the same laws governing simple processes of nucleation during condensation, boiling and crystallization. Log J' vs.  $1/\log^2$  (p/p<sub>0</sub>) is different depending on the properties of The reacting solid phases, which are characterized by coefficient A of 30 Formula (5).\*\* Experimental Scope of the Investigations and the Experimental Method Employed. 35 Studies recently undertaken on the thermal decomposition of magnesium carbonate were aimed at collecting experimental material on the  $\overline{\text{Mg0-C0}}_2$  system and checking the above conclusions concerning the reaction rate 40 | in the range of high supersaturations, where the process takes place mainly as a result of the nucleation of the new solid phase. The following substances were used in the studies: 1) magnesium carbonate prepared by drying basic magnesium carbonate in a stream of CO2 45 at 340° [5], 2) magnesium carbonate prepared by Potapenko's pressure method [4] from a solution of MgCl<sub>2</sub> and NaHCO<sub>3</sub>. Both preparations were subjected to  $\star$  In ref. [2],  $\phi$  was erronously calculated for p < p<sub>0</sub> according to relation (3). 50 \*\* Translator's note: Seems to be out of context in the original Polish.

Roman

Even

For the purpose of a preliminary determination of the dissociation temperature, magnesium carbonate prepared by Potapenko's method was analyzed thermogravimetrically in a device constructed at the Department of Technological Planning of the Warsaw Polytechnic School [6]. According to Tsvetkov [7], in the case of pure anhydrous magnesite, the curve of heat effects shows only one extremum corresponding to dissociation at about 600° and associated with a substantial weight loss.

Thermogravimetric analysis of the preparation used in further kinetic measurements (Fig. 1) showed that the dissociation temperature for this preparation is about 620°. The determination of this temperature facilitated the selection of appropriate conditions of measurements of the reaction rate in further investigations.

Experiments on the kinetics of thermal dissociation of magnesium carbonate were carried out in

Cover Page Source static apparatus by determining the rate of discharge of carbon dioxide through the system.

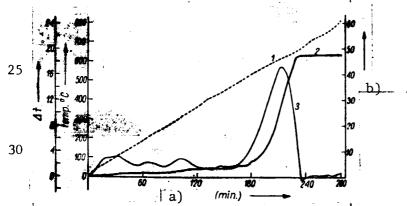



Fig. 1. Thermogram of Magnesium
-Carbonate. Curves: 1, Change of
-Temperature of Sample; 2, Change of
-Weight of Sample; 3, Differential
-Thermal Analysis; a, Time (Min.);
-b, Change of Weight.

After pressing, the preparation studied was ground to a grain size of 0.8-1.5 mm and placed in a quartz retort (Fig. 2). A quartz tube connected to this retort, which constituted the reaction vessel (in which the quartz housing of the thermocouples is placed). formed the reaction zone together with two mercury manometers. A flow-through stopcock connected this part of the apparatus with the vessels, i.e., the vacuum tanks, with manometers for measuring the pressure in these tanks and

-with the vacuum pump system (rotary oil pump, preliminary vacuum tank and -mercury diffusion pump). The temperature of the preparation was measured -with a Pt/PtRh thermocouple. The reaction vessel was placed in an electric -resistance furnace in which the constant temperature zone had been -previously determined. The temperature during the experiment was kept -constant by automatic control of the heating of the furnace with the aid of -an Ortex two-position thermoregulator governed by a Pt/PtRh thermocouple -placed outside the retort.

50

45

10

15

20

\_4 Even

Roman

odd

/1481

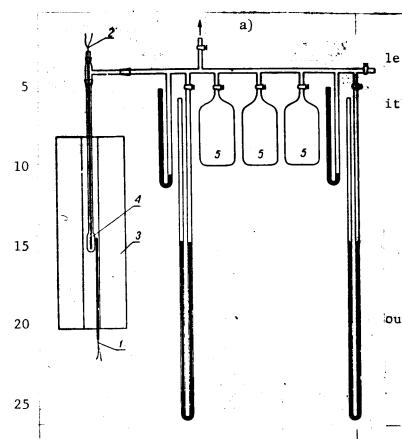



Fig. 2. 1 and 2, Thermocouple; 3, Tubular Resistance Furnace; 4, Reaction Vessel; 5, Vacuum Tank; a, To Vacuum Pump System.

The largest possible loads and a small gas space of the apparatus were used in order to eliminate the effect of a change in the composition of itle the solid phases on the reaction rate. After a pressure markedly different from the equilibrium pressure had built up above the system, the reaction rate was determined by measuring the rate of changes in the gas pressure over the system. To this end, a stopwatch was used to determine the time in which the mercury column in the manometer indicating the pressure in the ourcesystem shifted between two marks on a magnifying glass through which mercury level in the manometer was observed.

In the experiments discussed, the magnesium carbonate charge amounted to about 5 g, and the shift of the mercury column between the marks of the magnifying glass corresponded to a 0.1% change in the composition of the solid phase.

Results

magnesium carbonate.

Serious difficulties were encountered in attempts to determine the decomposition pressures of magnesium carbonate. The system studied behaved in an irreversible manner, showing an immeasurably slow course of the reaction opposite to the thermal dissociation reaction. In the course of the experiments, processes of physical adsorption and desorption of CO were observed to take place over a very wide temperature range. The occurrence of these processes considerably complicates the study of the thermal dissociation of

The results of the measurements were collected in Tables 1-2, which give the average pressure in the course of the measurement and the reaction rate expressed in terms of the rate of change of pressure in mm Hg/min. The value of this rate is of course characteristic only of the given series of measurements, since it depends on the size of the charge, its composition, the size of the gaseous space, etc.

٦

3

/1483

Even

45

Roman

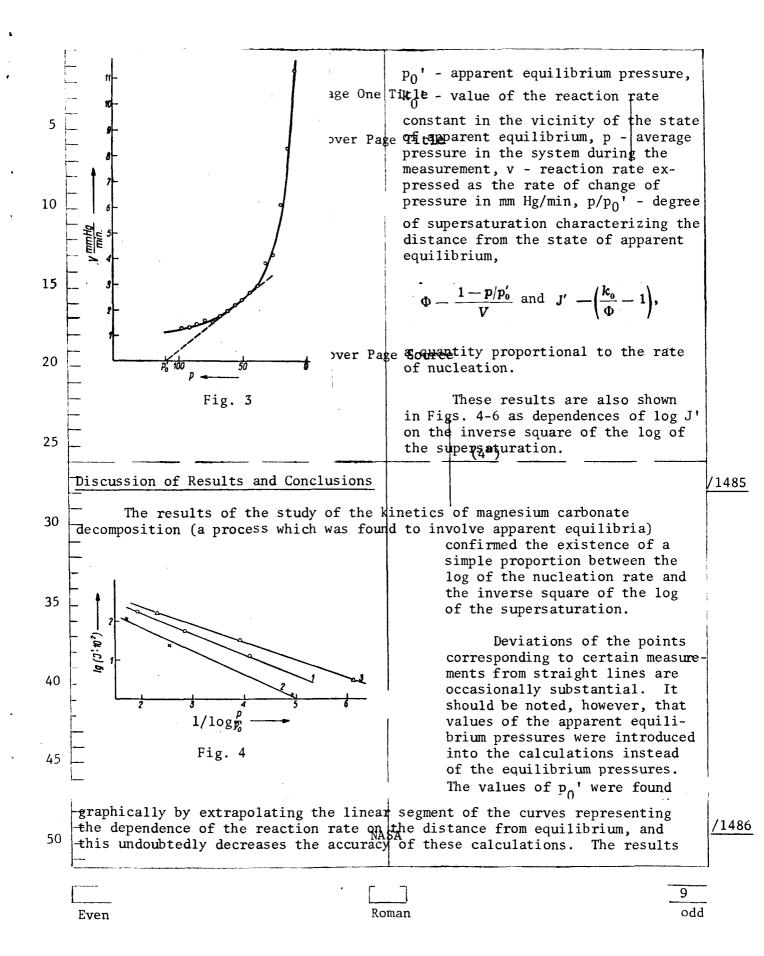
| Experiment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                         | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                     | Page On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e Title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                              |                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Number   p v p/p_s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                |                                                               |
| Number $p = v p/p_v = 0.10^s = J \cdot 10^s = \log(J \cdot 10^s) = 1/\log(g/v \cdot$                                                                                                                                                                                       | - Experime                                                                                                                                                                                                                                | ent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                     | Cover P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | age Tit <b>le</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                |                                                               |
| P v P/N/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                |                                                               |
| 1 t - 388 C p, - 240 mm Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                           | p v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $oldsymbol{p}/p_{o}^{\prime}$                                                                                                                       | Φ · 10 <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $J' \cdot 10^{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\log(J' \cdot 10^{\circ})$ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $/\log^3(p/p_0')$                                                                                                                                                              |                                                               |
| 47 19.6 0.1911 4.127 188.2 2.2700 1.925 6.3 9.85 0.2561 7.552 56.2 1.7467 2.857 79 6.52 0.3211 10.41 13.3 1.1239 4.108 2 1 - 386°C $p_{\star}^{\prime} \sim 269$ mm Hg $k_{\star}^{\prime} \sim 10^3 \sim 163$ 46 10.8 0.1710 7.676 112.4 2.0507 1.700 0.35 5.8 0.2342 13.20 23.5 1.3711 2.516 95 4.02 0.3552 16.00 1.30 0.1139 4.805 2 1.3710 0.352 16.00 1.30 0.1139 4.805 2 1.301°C $p_{\star}^{\prime} \sim 100$ mm Hg $k_{\star}^{\prime} \sim 10^3 \simeq 140.5$ 43 15.00 0.2205 4.007 181.2 2.2502 2.320 61 6.64 0.3128 10.35 3.7 1.5527 3.026 77 4.44 0.3049 13.03 3.08 0.4806 6.142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Perillian                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | orana o o                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                |                                                               |
| G3 9,85 0,2501 7,502 56,2 1,7497 2,857 79 6,52 0,3211 10,41 13,3 1,1239 4,108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                         | t - 386 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $p_0' \sim 24$                                                                                                                                      | is mm Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $k_0' \cdot 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ) <sup>n</sup> : = 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                |                                                               |
| G3 9,85 0,2501 7,502 56,2 1,7497 2,857 79 6,52 0,3211 10,41 13,3 1,1239 4,108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·.                                                                                                                                                                                                                                        | 42 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <br>                                                                                                                                                | <br>A 197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ያ በማስሴ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 (170                                                                                                                                                                         |                                                               |
| 70 0.02 0.3211 10.41 13.3 1.1239 4.108  2 1 - 386°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <del>-</del>                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                              |                                                               |
| 2   $1 - 386^{\circ}$ C   $p_n^{\prime}$ = 269 mm Hg   $k_n^{\prime} \cdot 10^2 \cdot - 163$   $46 \cdot 10, 8 \cdot 0, 1710 \cdot 7, 076 \cdot 112, 4 \cdot 2, 0507 \cdot 1,700 \cdot 63 \cdot 5, 8 \cdot 0, 2342 \cdot 13, 20 \cdot 23, 5 \cdot 1,3711 \cdot 2,516 \cdot 95 \cdot 4, 02 \cdot 0,3532 \cdot 16, 09 \cdot 1,30 \cdot 0,1139 \cdot 4,895 \cdot 3 \cdot 15 \cdot 391^{\circ}$ C   $p_n^{\prime} \cdot - 108 \cdot mn$ Hg   $k_n^{\prime} \cdot 10^3 \cdot = 140, 5$   $k_n^{\prime} \cdot 10^3 \cdot 10^3 \cdot = 140, 5$   $k_n^{\prime} \cdot 10^3 \cdot 10^3 \cdot = 140, 5$   $k_n^{\prime} \cdot 10^3 \cdot 10^3 \cdot = 140, 5$   $k_n^{\prime} \cdot 10^3 \cdot 10^3 \cdot 10^3 \cdot = 140, 5$   $k_n^{\prime} \cdot 10^3 \cdot 10^$ | *****                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ŕ                                                                                                                                                                              |                                                               |
| 46 10.8 0.1710 7.676 112.4 2.0507 1.700   63 5.8 0.2342 13.20 23.5 1.3711 2.316   95 4.02 0.3532 16.00 1.30 0.1139 4.895   8 1 = 301°C p_6 = 195 mm Hg k_6 · 10^3 = 140.5   43 15.00 0.2205 4.907 181.2 2.2582 2.320   61 6.64 0.3128 10.33 35.7 1.5027 3.926   77 4.44 0.3049 13.63 3.08 0.4886 6.142    (4")  A graph of the function v = f(p) showed the curves obtained to be similar to analogous curves for experiments in which apparent equilibria take place.  In earlier studies it was shown that when apparent equilibrium pressures F0' arise in a system, p0' should be introduced into equation (1) instead of D0. For this reason, in our further reasoning, the degree of supersaturation taken was the ratio of the pressure of carbon dioxide in the system at a given instant to the apparent decomposition pressure of the system at the 1 temperature of the measurement.  For each experiment, the apparent equilibrium pressure p0' characterizing the state of the surface was determined graphically from a plot of the function v = f(p). This was done because these plots gave curves which showed a rectilinear course in all cases over a certain range. This rectilinear course probably corresponds to the kinetic range at small distances from the apparent equilibrium. With this assumption, extrapolation of this segment to the intersection with the pressure axis made it possible to determine the apparent equilibrium pressure p0' of a given experiment. The slope of this curve then corresponds to constant k' from the modified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4,100                                                                                                                                                                          |                                                               |
| G3 5,8 0,2342 13,20 23,5 1,3711 2,516 05 4,02 0,3532 10,09 1,30 0,1199 4,895  3 1 = 301°C p' = 100 mm Hg k' \ 10° = 140,5  43 15,00 0,2205 4,007 181,2 2,2582 2,320 61 6,64 0,3128 10,33 35,7 1,5527 3,926 77 4,44 0,3049 13,03 3,08 0,4886 6,142  — A graph of the function v = f(p) showed the curves obtained to be similar to analogous curves for experiments in which apparent equilibria take place.  — In earlier studies it was shown that when apparent equilibrium pressures Po' arise in a system, po' should be introduced into equation (1) instead of po' arise in a system, po' should be introduced into equation (1) instead of po' arise in a system, po' should be introduced into equation (1) instead of po' arise in a system, po' should be introduced into equation (2) instead of po' arise in a system, po' should be introduced into equation (3) instead of po' arise in a system, po' should be introduced into equation (4) instead of po' arise in a system, po' should be introduced into equation (5) instead of po' arise in a system po' arise in a system at a given instant to the apparent decomposition pressure of the system at the temperature of the measurement.  — For each experiment, the apparent equilibrium pressure po' characterizing the state of the surface was determined graphically from a plot of the function v = f(p). This was done because these plots gave curves which showed a rectilinear course in all cases over a certain range. This rectilinear course probably corresponds to the kinetic range at small distances from the apparent equilibrium. With this assumption, extrapolation of this segment to the intersection with the pressure axis made it possible to determine the apparent equilibrium pressure po' of a given experiment. The slope of this curve then corresponds to constant k' from the modified formula for the reaction rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                              |                                                               |
| 3 (**301°C p <sub>0</sub> **=100 mm Hg k'·10³*=140,5  43 15,00 0,2205 4,007 181,2 2,2502 2,320 61 6,64 0,3128 10,33 35,7 1,5527 3,926 77 4,44 0,3949 13,63 3,08 0,4886 6,142   A graph of the function v = f(p) showed the curves obtained to be similar to analogous curves for experiments in which apparent equilibrium pressures P <sub>0</sub> ' arise in a system, p <sub>0</sub> ' should be introduced into equation (1) instead of P <sub>0</sub> . For this reason, in our further reasoning, the degree of supersaturation taken was the ratio of the pressure of carbon dioxide in the system at a given instant to the apparent decomposition pressure of the system at the temperature of the measurement.  For each experiment, the apparent equilibrium pressure p <sub>0</sub> ' characterizing the state of the surface was determined graphically from a plot of the function v = f(p). This was done because these plots gave curves which showed a rectilinear course in all cases over a certain range. This rectilinear course probably corresponds to the kinetic range at small distances from the apparent equilibrium. With this assumption, extrapolation of this segment to the intersection with the pressure axis made it possible to determine the apparent equilibrium pressure p <sub>0</sub> ' of a given experiment. The slope of this curve then corresponds to constant k' from the modified formula for the reaction rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del></del>                                                                                                                                                                                                                               | 40 10,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                     | 7,676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 112,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,0507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,700                                                                                                                                                                          |                                                               |
| A graph of the function $v = f(p)$ showed the curves obtained to be similar to analogous curves for experiments in which apparent equilibrium pressures $P_0$ ' arise in a system, $p_0$ ' should be introduced into equation (1) instead of $P_0$ . For this reason, in our further reasoning, the degree of supersaturation taken was the ratio of the pressure of carbon dioxide in the system at a given instant to the apparent decomposition pressure of the system at the function $v = f(p)$ . For each experiment, the apparent equilibrium pressure of the measurement.  For each experiment, the apparent equilibrium pressure $p_0$ ' characterizing the state of the surface was determined graphically from a plot of the function $v = f(p)$ . This was done because these plots gave curves which showed a rectilinear course in all cases over a certain range. This rectilinear course probably corresponds to the kinetic range at small distances from the apparent equilibrium. With this assumption, extrapolation of this segment to the intersection with the pressure axis made it possible to determine the apparent equilibrium pressure $p_0$ ' of a given experiment. The slope of this curve then corresponds to constant k' from the modified formula for the reaction rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                           | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,3711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,316                                                                                                                                                                          |                                                               |
| 43 15,00 0,2205 4,007 181,2 2,2502 2,320   61 6,04 0,3128 10,35 35,7 1,5527 3,926   77 4,44 0,3049 13,63 3,08 0,4886 6,142   (4")   (4")    — A graph of the function v = f(p) showed the curves obtained to be similar to analogous curves for experiments in which apparent equilibria take place.  — In earlier studies it was shown that when apparent equilibrium pressures P <sub>0</sub> ' arise in a system, p <sub>0</sub> ' should be introduced into equation (1) instead of power of the pressure of carbon dioxide in the system at a given instant to the apparent decomposition pressure of the system at the Lemperature of the measurement.  — For each experiment, the apparent equilibrium pressure p <sub>0</sub> ' characterizing the state of the surface was determined graphically from a plot of the function v = f(p). This was done because these plots gave curves which showed a rectilinear course in all cases over a certain range. This rectilinear course probably corresponds to the kinetic range at small distances from the apparent equilibrium. With this assumption, extrapolation of this segment to the intersection with the pressure axis made it possible to determine the apparent equilibrium pressure p <sub>0</sub> ' of a given experiment. The slope of this curve then corresponds to constant k' from the modified formula for the reaction rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4,895                                                                                                                                                                          |                                                               |
| 61 6.04 0.3128 10.35 35.7 1.5527 3.926 6.142  (4")  A graph of the function v = f(p) showed the curves obtained to be similar to analogous curves for experiments in which apparent equilibria take place.  In earlier studies it was shown that when apparent equilibrium pressures P0' arise in a system, p0' should be introduced into equation (1) instead of p0. For this reason, in our further reasoning, the degree of supersaturation taken was the ratio of the pressure of carbon dioxide in the system at a given instant to the apparent decomposition pressure of the system at the temperature of the measurement.  For each experiment, the apparent equilibrium pressure p0' characterizing the state of the surface was determined graphically from a plot of the function v = f(p). This was done because these plots gave curves which showed a rectilinear course in all cases over a certain range. This rectilinear course probably corresponds to the kinetic range at small distances from the apparent equilibrium. With this assumption, extrapolation of this segment to the intersection with the pressure axis made it possible to determine the apparent equilibrium pressure p0' of a given experiment. The slope of this curve then corresponds to constant k' from the modified formula for the reaction rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                                                                                                                                                                                                                         | t === 391°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | p <sub>d</sub> ' == 19                                                                                                                              | 5 mm Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $k_0' \cdot 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ) <sup>a</sup> === 140,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                |                                                               |
| G1 6.04 0.3128 10.35 35.7 1.5527 3.926 77 4.44 0.3049 13.63 3.08 0.4886 6.142   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")   (4")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del>-</del>                                                                                                                                                                                                                              | 43 15.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.2205                                                                                                                                              | 4.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 191.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.91.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9 990                                                                                                                                                                          |                                                               |
| A graph of the function $v = f(p)$ showed the curves obtained to be—similar to analogous curves for experiments in which apparent equilibria take—place.  In earlier studies it was shown that when apparent equilibrium pressures $P_0$ ' arise in a system, $p_0$ ' should be introduced into equation (1) instead of $p_0$ . For this reason, in our further reasoning, the degree of supersaturation taken was the ratio of the pressure of carbon dioxide in the system at a given instant to the apparent decomposition pressure of the system at the temperature of the measurement.  For each experiment, the apparent equilibrium pressure $p_0$ ' characterizing the state of the surface was determined graphically from a plot of the function $v = f(p)$ . This was done because these plots gave curves which showed a rectilinear course in all cases over a certain range. This rectilinear course probably corresponds to the kinetic range at small distances from the apparent equilibrium. With this assumption, extrapolation of this segment to the intersection with the pressure axis made it possible to determine the apparent equilibrium pressure $p_0$ ' of a given experiment. The slope of this curve then corresponds to constant k' from the modified formula for the reaction rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                |                                                               |
| A graph of the function $v = f(p)$ showed the curves obtained to be—similar to analogous curves for experiments in which apparent equilibria take—place.  In earlier studies it was shown that when apparent equilibrium pressures $P_0$ ' arise in a system, $p_0$ ' should be introduced into equation (1) instead of $P_0$ . For this reason, in our further reasoning, the degree of supersaturation taken was the ratio of the pressure of carbon dioxide in the system at a given instant to the apparent decomposition pressure of the system at the Lemperature of the measurement.  For each experiment, the apparent equilibrium pressure $p_0$ ' characterizing the state of the surface was determined graphically from a plot of the function $v = f(p)$ . This was done because these plots gave curves which showed a rectilinear course in all cases over a certain range. This rectilinear course probably corresponds to the kinetic range at small distances from the apparent equilibrium. With this assumption, extrapolation of this segment to the intersection with the pressure axis made it possible to determine the apparent equilibrium pressure $p_0$ ' of a given experiment. The slope of this curve then corresponds to constant k' from the modified formula for the reaction rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                           | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                |                                                               |
| A graph of the function $v = f(p)$ showed the curves obtained to be similar to analogous curves for experiments in which apparent equilibria take place.  In earlier studies it was shown that when apparent equilibrium pressures $P_0$ ' arise in a system, $p_0$ ' should be introduced into equation (1) instead of $p_0$ . For this reason, in our further reasoning, the degree of supersaturation taken was the ratio of the pressure of carbon dioxide in the system at a given instant to the apparent decomposition pressure of the system at the temperature of the measurement.  For each experiment, the apparent equilibrium pressure $p_0$ ' characterizing the state of the surface was determined graphically from a plot of the function $v = f(p)$ . This was done because these plots gave curves which showed a rectilinear course in all cases over a certain range. This rectilinear course probably corresponds to the kinetic range at small distances from the apparent equilibrium. With this assumption, extrapolation of this segment to the intersection with the pressure axis made it possible to determine the apparent equilibrium pressure $p_0$ ' of a given experiment. The slope of this curve then corresponds to constant k' from the modified formula for the reaction rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                |                                                               |
| A graph of the function $v = f(p)$ showed the curves obtained to be similar to analogous curves for experiments in which apparent equilibria take place.  In earlier studies it was shown that when apparent equilibrium pressures $P_0$ ' arise in a system, $p_0$ ' should be introduced into equation (1) instead of $P_0$ . For this reason, in our further reasoning, the degree of supersaturation taken was the ratio of the pressure of carbon dioxide in the system at a given instant to the apparent decomposition pressure of the system at the temperature of the measurement.  For each experiment, the apparent equilibrium pressure $P_0$ ' characterizing the state of the surface was determined graphically from a plot of the function $V = f(p)$ . This was done because these plots gave curves which showed a rectilinear course in all cases over a certain range. This rectilinear course probably corresponds to the kinetic range at small distances from the apparent equilibrium. With this assumption, extrapolation of this segment to the intersection with the pressure axis made it possible to determine the apparent equilibrium pressure $P_0$ ' of a given experiment. The slope of this curve then corresponds to constant k' from the modified formula for the reaction rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                |                                                               |
| A graph of the function $v = f(p)$ showed the curves obtained to be similar to analogous curves for experiments in which apparent equilibria take place.  In earlier studies it was shown that when apparent equilibrium pressures $P_0$ ' arise in a system, $P_0$ ' should be introduced into equation (1) instead of $P_0$ . For this reason, in our further reasoning, the degree of supersaturation taken was the ratio of the pressure of carbon dioxide in the system at a given instant to the apparent decomposition pressure of the system at the temperature of the measurement.  For each experiment, the apparent equilibrium pressure $P_0$ ' characterizing the state of the surface was determined graphically from a plot of the function $V = f(p)$ . This was done because these plots gave curves which showed a rectilinear course in all cases over a certain range. This rectilinear course probably corresponds to the kinetic range at small distances from the apparent equilibrium. With this assumption, extrapolation of this segment to the intersection with the pressure axis made it possible to determine the apparent equilibrium pressure $P_0$ ' of a given experiment. The slope of this curve then corresponds to constant k' from the modified formula for the reaction rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (111)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                |                                                               |
| Po. For this reason, in our further reasoning, the degree of supersaturation taken was the ratio of the pressure of carbon dioxide in the system at a given instant to the apparent decomposition pressure of the system at the temperature of the measurement.  For each experiment, the apparent equilibrium pressure po' characterizing the state of the surface was determined graphically from a plot of the function v = f(p). This was done because these plots gave curves which showed a rectilinear course in all cases over a certain range. This rectilinear course probably corresponds to the kinetic range at small distances from the apparent equilibrium. With this assumption, extrapolation of this segment to the intersection with the pressure axis made it possible to determine the apparent equilibrium pressure po' of a given experiment. The slope of this curve then corresponds to constant k' from the modified formula for the reaction rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | —similar to a                                                                                                                                                                                                                             | h of the nalogous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | functio<br>curves                                                                                                                                   | on v = f(p)<br>for experi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | showed timents in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | he curves of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | otained to bent equilibr                                                                                                                                                       | e<br>ia take                                                  |
| taken was the ratio of the pressure of carbon dioxide in the system at agiven instant to the apparent decomposition pressure of the system at thetemperature of the measurement For each experiment, the apparent equilibrium pressure $p_0$ ' character izing the state of the surface was determined graphically from a plot of the function $v = f(p)$ . This was done because these plots gave curves which showed a rectilinear course in all cases over a certain range. This rectilinear course probably corresponds to the kinetic range at small distances from the apparent equilibrium. With this assumption, extrapolation of this segment to the intersection with the pressure axis made it possible to determine the apparent equilibrium pressure $p_0$ ' of a given experiment. The formula for the reaction rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -similar to a<br>-place.<br>-                                                                                                                                                                                                             | inalogous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | curves                                                                                                                                              | for experi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | iments in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | he curves of<br>which appare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ent equilibr                                                                                                                                                                   | ia take                                                       |
| taken was the ratio of the pressure of carbon dioxide in the system at agiven instant to the apparent decomposition pressure of the system at thetemperature of the measurement For each experiment, the apparent equilibrium pressure $p_0$ ' character izing the state of the surface was determined graphically from a plot of the function $v = f(p)$ . This was done because these plots gave curves which showed a rectilinear course in all cases over a certain range. This rectilinear course probably corresponds to the kinetic range at small distances from the apparent equilibrium. With this assumption, extrapolation of this segment to the intersection with the pressure axis made it possible to determine the apparent equilibrium pressure $p_0$ ' of a given experiment. The formula for the reaction rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -similar to a<br>-place.<br><br>In ear                                                                                                                                                                                                    | malogous<br>clier stud                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | curves<br>lies it                                                                                                                                   | for experi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | that when                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | he curves of which appare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ent equilibr<br>quilibrium p                                                                                                                                                   | ria take                                                      |
| given instant to the apparent decomposition pressure of the system at the temperature of the measurement.  For each experiment, the apparent equilibrium pressure po' characterizing the state of the surface was determined graphically from a plot of the function v = f(p). This was done because these plots gave curves which showed a rectilinear course in all cases over a certain range. This rectilinear course probably corresponds to the kinetic range at small distances from the apparent equilibrium. With this assumption, extrapolation of this segment to the intersection with the pressure axis made it possible to determine the apparent equilibrium pressure po' of a given experiment. The slope of this curve then corresponds to constant k' from the modified formula for the reaction rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -similar to a -place In ear - 0' arise in                                                                                                                                                                                                 | nalogous<br>clier stud<br>n a system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | curves<br>lies it                                                                                                                                   | was shown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | that when                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | he curves of which appare apparent ed into equat:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ent equilibr<br>quilibrium p<br>ion (1) inst                                                                                                                                   | ressures                                                      |
| For each experiment, the apparent equilibrium pressure po' characterizing the state of the surface was determined graphically from a plot of the function v = f(p). This was done because these plots gave curves which showed a rectilinear course in all cases over a certain range. This rectilinear course probably corresponds to the kinetic range at small distances from the apparent equilibrium. With this assumption, extrapolation of this segment to the intersection with the pressure axis made it possible to determine the apparent equilibrium pressure po' of a given experiment. The slope of this curve then corresponds to constant k' from the modified formula for the reaction rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $-$ similar to a $-$ place. $-$ In ear $-$ P $_0$ ' arise in $-$ P $_0$ . For thi                                                                                                                                                         | nalogous<br>clier stud<br>a system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | curves lies it a, p <sub>0</sub> 's in our                                                                                                          | was shown thould be to further a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | that when introduced reasoning,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | he curves of which appared apparent edinto equations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ent equilibr<br>quilibrium p<br>ion (1) inst<br>of supersat                                                                                                                    | ia take ressures ead of uration                               |
| For each experiment, the apparent equilibrium pressure po' characterizing the state of the surface was determined graphically from a plot of the function $v = f(p)$ . This was done because these plots gave curves which showed a rectilinear course in all cases over a certain range. This rectilinear course probably corresponds to the kinetic range at small distances from the apparent equilibrium. With this assumption, extrapolation of this segment to the intersection with the pressure axis made it possible to determine the apparent equilibrium pressure $p_0$ ' of a given experiment. The slope of this curve then corresponds to constant k' from the modified formula for the reaction rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -similar to a -place In ear - P <sub>0</sub> ' arise in - p <sub>0</sub> . For thi taken was th                                                                                                                                           | nalogous<br>clier stud<br>a system<br>s reason,<br>e ratio o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | curves lies it a, p <sub>0</sub> 's in our of the p                                                                                                 | was shown thould be to ressure on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | that when introduced reasoning,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | he curves of which apparent ed into equation the degree ioxide in the degree ioxide ioxide in the degree ioxide io | ent equilibr<br>quilibrium p<br>ion (1) inst<br>of supersat<br>ne system at                                                                                                    | ressures ead of uration                                       |
| izing the state of the surface was determined graphically from a plot of the function $v = f(p)$ . This was done because these plots gave curves which showed a rectilinear course in all cases over a certain range. This rectilinear course probably corresponds to the kinetic range at small distances from the apparent equilibrium. With this assumption, extrapolation of this segment to the intersection with the pressure axis made it possible to determine the apparent equilibrium pressure $p_0$ of a given experiment. The slope of this curve then corresponds to constant k' from the modified formula for the reaction rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -similar to a -place In ear - p <sub>0</sub> ' arise in - p <sub>0</sub> . For thi taken was th                                                                                                                                           | rlier stud<br>n a system<br>s reason,<br>ne ratio o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lies it  i, p <sub>0</sub> 's  in our  of the p  apparen                                                                                            | was shown should be in further pressure on the decomposite of the composite of the composit | that when introduced reasoning,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | he curves of which apparent ed into equation the degree ioxide in the degree ioxide ioxide in the degree ioxide io | ent equilibr<br>quilibrium p<br>ion (1) inst<br>of supersat<br>ne system at                                                                                                    | ressures ead of uration                                       |
| izing the state of the surface was determined graphically from a plot of the function $v = f(p)$ . This was done because these plots gave curves which showed a rectilinear course in all cases over a certain range. This rectilinear course probably corresponds to the kinetic range at small distances from the apparent equilibrium. With this assumption, extrapolation of this segment to the intersection with the pressure axis made it possible to determine the apparent equilibrium pressure $p_0$ of a given experiment. The slope of this curve then corresponds to constant k' from the modified formula for the reaction rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -similar to a -place In ear -p <sub>0</sub> ' arise in -p <sub>0</sub> . For thi -taken was th -given instan                                                                                                                              | rlier stud<br>n a system<br>s reason,<br>ne ratio o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lies it  i, p <sub>0</sub> 's  in our  of the p  apparen                                                                                            | was shown should be in further pressure on the decomposite of the composite of the composit | that when introduced reasoning,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | he curves of which apparent ed into equation the degree ioxide in the degree ioxide ioxide in the degree ioxide io | ent equilibr<br>quilibrium p<br>ion (1) inst<br>of supersat<br>ne system at                                                                                                    | ressures ead of uration                                       |
| function $v = f(p)$ . This was done because these plots gave curves which showed a rectilinear course in all cases over a certain range. This rectilinear course probably corresponds to the kinetic range at small distances from the apparent equilibrium. With this assumption, extrapolation of this segment to the intersection with the pressure axis made it possible to determine the apparent equilibrium pressure $p_0$ ' of a given experiment. The slope of this curve then corresponds to constant k' from the modified formula for the reaction rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -similar to a -place In ear -p <sub>0</sub> ' arise in -p <sub>0</sub> . For thi taken was th given instan temperature                                                                                                                    | rlier stud<br>a a system<br>s reason,<br>ae ratio o<br>at to the<br>of the me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lies it  i, p <sub>0</sub> 's  in our  of the p  apparent                                                                                           | was shown thould be in further pressure on the decomposent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | that when introduced reasoning, carbon desition pre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | he curves of which apparent ed into equations the degree ioxide in the source of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ent equilibrium pion (1) instof supersathe system at experse at                                                                                                                | ressures ead of uration a the                                 |
| showed a rectilinear course in all cases over a certain range. This rectilinear course probably corresponds to the kinetic range at small distances from the apparent equilibrium. With this assumption, extrapolation of this segment to the intersection with the pressure axis made it possible to determine the apparent equilibrium pressure p <sub>0</sub> ' of a given experiment. The slope of this curve then corresponds to constant k' from the modified formula for the reaction rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -similar to a -place In ear -p <sub>0</sub> ' arise in -p <sub>0</sub> . For thi taken was th given instan temperature - For ea                                                                                                           | rlier stud<br>a a system<br>s reason,<br>ae ratio o<br>at to the<br>of the me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lies it  i, p <sub>0</sub> 's  in our  of the p  apparen  asureme                                                                                   | was shown thould be in further pressure out decomposent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | that when introduced reasoning, f carbon desition pre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | he curves of which apparent edinto equation the degree ioxide in the source of the rium pressure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | quilibrium p ion (1) inst of supersat he system at e system at                                                                                                                 | ressures ead of uration a the                                 |
| Linear course probably corresponds to the kinetic range at small distances from the apparent equilibrium. With this assumption, extrapolation of this segment to the intersection with the pressure axis made it possible to determine the apparent equilibrium pressure p <sub>0</sub> ' of a given experiment. The slope of this curve then corresponds to constant k' from the modified formula for the reaction rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -similar to a -place In ear -p <sub>0</sub> ' arise in -p <sub>0</sub> . For thi -taken was th -given instan -temperature - For ea -izing the st                                                                                          | clier stud<br>a system<br>s reason,<br>e ratio of<br>to the<br>of the me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lies it  i, p <sub>0</sub> 's  in our  of the p  apparen  easureme  ment, the surfa                                                                 | was shown thould be in further to ressure out decomposent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | that when introduced reasoning, f carbon desition pre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | he curves of which apparent ed into equation the degree ioxide in the source of the rium pressuraphically                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | quilibrium p ion (1) inst of supersat ne system at e system at re p <sub>0</sub> ' chara from a plot                                                                           | ressures ead of uration a the cterof the                      |
| _from the apparent equilibrium. With this assumption, extrapolation of this _segment to the intersection with the pressure axis made it possible to _determine the apparent equilibrium pressure p <sub>0</sub> ' of a given experiment. The _slope of this curve then corresponds to constant k' from the modified _formula for the reaction rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -similar to a -place In ear -p <sub>0</sub> ' arise in -p <sub>0</sub> . For thi -taken was th -given instan -temperature - For ea -izing the st -function v =                                                                            | rlier stud<br>a system<br>s reason,<br>he ratio on<br>t to the<br>of the me<br>ach experi-<br>tate of the<br>f(p). T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lies it  i, p <sub>0</sub> 's  in our  of the p  apparen  easureme  ment, t  te surfa  his was                                                      | was shown thould be in further to ressure on the decomposent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | that when introduced reasoning, f carbon dition pre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | he curves of which apparent ed into equation the degree ioxide in the saure of the rium pressuraphically plots gave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | quilibrium p ion (1) inst of supersat ne system at e system at re p <sub>0</sub> ' chara from a plot curves whice                                                              | ressures ead of uration a the cter- of the                    |
| segment to the intersection with the pressure axis made it possible to determine the apparent equilibrium pressure p <sub>0</sub> ' of a given experiment. The slope of this curve then corresponds to constant k' from the modified formula for the reaction rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -similar to a -place In ear -p <sub>0</sub> ' arise in -p <sub>0</sub> . For thi -taken was th -given instan -temperature - For ea -izing the st -function v = -showed a rec                                                              | rlier stud<br>a a system<br>s reason,<br>he ratio on<br>t to the<br>of the me<br>ach experi-<br>tate of the<br>f(p). Tetilinear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lies it  i, p <sub>0</sub> 's  in our  of the p  apparen  asureme  ment, t  ie surfa  This was  course                                              | was shown thould be in all case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | that when introduced reasoning, f carbon desition present equilible rmined gause these sees over a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | apparent edinto equations the degree ioxide in the sure of the rium pressur raphically plots gave certain rap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | quilibrium p ion (1) inst of supersat he system at e system at re p <sub>0</sub> ' chara from a plot curves which nge. This r                                                  | ressures ead of uration a the  cter- of the h ecti-           |
| _determine the apparent equilibrium pressure p <sub>0</sub> ' of a given experiment. The _slope of this curve then corresponds to constant k' from the modified _formula for the reaction rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -similar to a -place In ear -p <sub>0</sub> ' arise in -p <sub>0</sub> . For thi -taken was th -given instan -temperature - For ea -izing the st -function v = -showed a rec -linear cours                                                | clier stud<br>a a system<br>s reason,<br>he ratio on<br>t to the<br>of the me<br>ach experi-<br>tate of the<br>f(p). Tetilinear<br>se probabl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lies it  i, p <sub>0</sub> 's  in our  of the p  apparen  asureme  ment, t  ie surfa  This was  course  y corre                                     | was shown thould be in all cases sponds to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | that when introduced reasoning, f carbon desition present equilible termined gause these ses over a the kinet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | apparent edinto equations the degree ioxide in the sure of the rium pressur raphically plots gave certain ranic range at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | quilibrium p ion (1) inst of supersat he system at e system at re p <sub>0</sub> ' chara from a plot curves which nge. This r small dista                                      | ressures ead of uration a the  cter- of the h ecti- nces      |
| slope of this curve then corresponds to constant k' from the modified formula for the reaction rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -similar to a -place In ear -p <sub>0</sub> ' arise in -p <sub>0</sub> . For thi taken was th given instan temperature - For ea izing the st function v = showed a rec linear cours from the app                                          | clier stud<br>a a system<br>s reason,<br>ae ratio of<br>at to the<br>of the me<br>ach experi<br>ate of the<br>stilinear<br>se probable<br>parent equ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lies it  n, p <sub>0</sub> 's  in our  of the p  apparen  asureme  ment, t  as surfa  his was  course  y corre  ilibriu                             | was shown thould be in all cases onds. With the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | that when introduced reasoning, f carbon desition present equilible termined gause these ses over a the kinet this assum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | apparent ed into equation the degree ioxide in the sure of the rium pressur aphically plots gave certain range at ption, extra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | quilibrium p ion (1) inst of supersat he system at e system at cre p <sub>0</sub> ' chara from a plot curves which age. This r small dista                                     | ressures ead of uration a the  cter- of the h ecti- nces this |
| formula for the reaction rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -similar to a -place In ear -p <sub>0</sub> ' arise in -p <sub>0</sub> . For thi -taken was th -given instan -temperature - For ea -izing the st -function v = -showed a rec -linear cours -from the app -segment to t                    | clier stud<br>a a system<br>s reason,<br>e ratio of<br>to the<br>of the me<br>ach experi<br>ate of the<br>stilinear<br>se probable<br>parent equals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lies it  1, p <sub>0</sub> 's  in our  of the p  apparen  asureme  ment, the surfa  his was  course  y corre  ilibrium  ection                      | was shown thould be in further to ressure on the apparent ce was detain all cases ponds to um. With the parent with the parent ce was the composition of the apparent ce was detained by the case of t | that when introduced reasoning, for carbon dition preside these sees over a the kinetchis assumpressure a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | apparent ed into equation the degree ioxide in the sure of the rium pressur raphically plots gave certain rapic range at ption, extraxis made it                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | quilibrium p ion (1) inst of supersat ne system at e system at cre p <sub>0</sub> ' chara from a plot curves which nge. This r small dista apolation of possible to            | ressures ead of uration a the  cter- of the h ecti- nces this |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -similar to a -place In ear -p <sub>0</sub> ' arise in -p <sub>0</sub> . For thi -taken was th -given instan -temperature - For ea -izing the st -function v = -showed a rec -linear cours -from the app -segment to t -determine th      | clier stude a system as reason, as reason, as ratio of the me of the me at each experisate of the f(p). To tilinear see probably arent equals apparent experise exper | lies it  i, p <sub>0</sub> 's  in our  of the p  apparen  easureme  ment, the surfa  This was  course  y corre  illibriu  ection  it equil          | was shown should be in the apparent see was det in all cases sponds to with the pibrium pressure of the pressure of the apparent see was det in all cases and the pibrium pressure of the pressure of the apparent see was detained by the pibrium pressure of the pibrium pressure of the pressure of the pibrium pressure of | that when introduced reasoning, for carbon dition president the kinet chis assumptessure a essure por                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | he curves of which apparent ed into equation the degree ioxide in the source of the rium pressuraphically plots gave certain ranic range at ption, extraxis made it of a given                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | quilibrium p ion (1) inst of supersat ne system at e system at re p <sub>0</sub> ' chara from a plot curves whice nge. This r small dista apolation of possible to experiment. | ressures ead of uration a the  cter- of the h ecti- nces this |
| →Tr. Note: Commas indicate decimal points.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -similar to a -place.  - In ear -p0' arise in -p0. For thi taken was th given instan temperature - For ea izing the st function v = showed a rec linear cours from the app segment to t determine th slope of thi                         | clier stude a system as reason, as reason, as ratio on the me of the me at the experiment of the intersection of the intersection apparents curve to the surve to the survey of the survey o | lies it  1, p <sub>0</sub> 's  in our  of the p  apparen  asureme  ment, t  as surfa  his was  course  y corre  ilibriu  ection  it equil           | was shown should be in the apparence was detain all cases sponds to um. With the prioresponds to the apparence of the apparence was detained because the apparence was detained because the apparence was detained by th | that when introduced reasoning, for carbon dition president the kinet chis assumptessure a essure por                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | he curves of which apparent ed into equation the degree ioxide in the source of the rium pressuraphically plots gave certain ranic range at ption, extraxis made it of a given                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | quilibrium p ion (1) inst of supersat ne system at e system at re p <sub>0</sub> ' chara from a plot curves whice nge. This r small dista apolation of possible to experiment. | ressures ead of uration a the  cter- of the h ecti- nces this |
| - Commas indicate decimal points.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -similar to a -place.  In ear -p0' arise in -p0. For thi taken was th given instan temperature  For ea izing the st function v = showed a rec linear cours from the app segment to t determine th slope of thi                            | clier stude a system as reason, as reason, as ratio on the me of the me at the experiment of the intersection of the intersection apparents curve to the surve to the survey of the survey o | lies it  1, p <sub>0</sub> 's  in our  of the p  apparen  asureme  ment, t  as surfa  his was  course  y corre  ilibriu  ection  it equil           | was shown should be in the apparence was detain all cases sponds to um. With the prioresponds to the apparence of the apparence was detained because the apparence was detained because the apparence was detained by th | that when introduced reasoning, for carbon dition president the kinet chis assumptessure a essure por                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | he curves of which apparent ed into equation the degree ioxide in the source of the rium pressuraphically plots gave certain ranic range at ption, extraxis made it of a given                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | quilibrium p ion (1) inst of supersat ne system at e system at re p <sub>0</sub> ' chara from a plot curves whice nge. This r small dista apolation of possible to experiment. | ressures ead of uration a the  cter- of the h ecti- nces this |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -similar to a -place.  - In ear -p0' arise in -p0. For thi -taken was th -given instan -temperature - For ea -izing the st -function v = -showed a rec -linear cours -from the app -segment to t -determine th -slope of thi -formula for | clier stude a system as reason, he ratio on the me of the me of the me are of the f(p). The stillinear see probable arent equals are of the intersal apparents curve the react                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lies it  1, p <sub>0</sub> 's  in our  of the p  apparen  asureme  ment, t  as surfa  his was  course  y corre  ilibriu  ection  it equil  then cor | was shown should be in further to ressure on the apparence was detailed and the interest of the composition of the apparence was detained and the interest of  | that when introduced reasoning, foarbon dition president equilibration the equilibration of the kinet chis assumptes a constant c | he curves of which apparent ed into equation the degree ioxide in the source of the rium pressuraphically plots gave certain ranic range at ption, extraxis made it of a given                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | quilibrium p ion (1) inst of supersat ne system at e system at re p <sub>0</sub> ' chara from a plot curves whice nge. This r small dista apolation of possible to experiment. | ressures ead of uration a the  cter- of the h ecti- nces this |

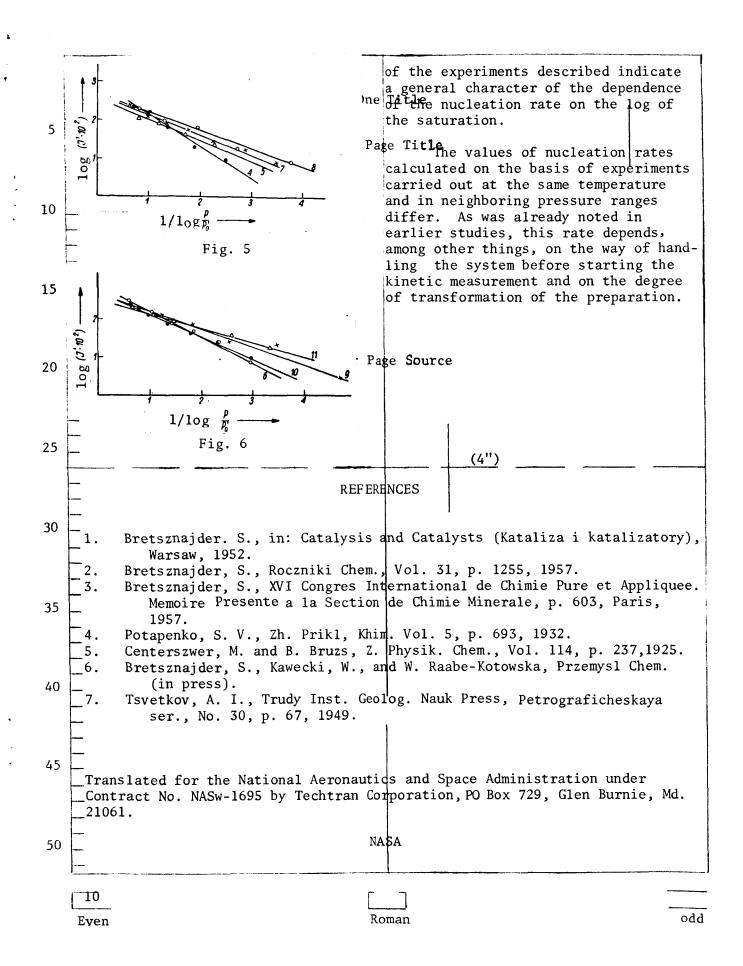
Roman

odd

Even

| -<br>Preparation | n 2.         |             |                        | rage              | one IIt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ıe                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |
|------------------|--------------|-------------|------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| _                |              |             |                        | Cover             | Page T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | itle                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |
| - Experi         | nent         |             |                        |                   | Ĭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |
| - Number         | Т            | <del></del> |                        |                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |
| <del>-</del>     |              | p           | v                      | $p/p_0'$          | Φ·102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $J' \cdot 10^2$ log                                                                                                                                                                                                                               | $g(J'\cdot 10^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10g (p/p4)                                                                                                                                                            |
| _                | 4            | t=-         | 195°C                  | $p_0'=$           | 129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $k_0' = 453 \cdot 10^{-8}$                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |
|                  |              |             | 6 49                   | 0.0620            | 14 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2128                                                                                                                                                                                                                                              | 2 3279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 6859                                                                                                                                                                |
| <del>-</del>     |              |             |                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |
| -  .             | 1            |             |                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |
| _                | j            |             |                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |
| -                |              | 30          |                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |
| _                | 5            | -           |                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $k_0' = 453 \cdot 10^{-8}$                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ··                                                                                                                                                                    |
| _                |              | 10          | 6.86                   | 0.0775            | 13 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 236.8                                                                                                                                                                                                                                             | 2.3744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N 81 <b>n</b> A                                                                                                                                                       |
| _                |              |             |                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |
| _                |              |             |                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |
|                  |              |             |                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |
| _                | 6            |             |                        | •                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                   | 1,0020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,272                                                                                                                                                                 |
|                  |              |             | 1                      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |
|                  |              |             |                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                       |
| -                |              |             |                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |
| _                |              |             |                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,6858 1,007 1,367 1,874 2,492  0,8104 1,217 1,694 2,272  0,6089 1,040 1,409 1,839 2,343 2,946  0,6231 0,9535 1,323 1,753 2,260 2,869  0,8000 1,306 1,929 2,721 3,755 |
| _ 1              |              |             |                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |
| _                |              |             |                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |
|                  |              |             |                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                   | 0,8543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,946                                                                                                                                                                 |
| ļ                | 7            | t=          | 498,5°C                | $p_0'=$           | 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $k_0' = 287,5 \cdot 10^{-3}$                                                                                                                                                                                                                      | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del></del>                                                                                                                                                           |
|                  |              | 8           | 10,76                  | 0,0541            | 8.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 227,1                                                                                                                                                                                                                                             | 2,3562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,6231                                                                                                                                                                |
| -                |              | 14          |                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |
| _                |              | 20          |                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |
| _                |              | 26          |                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |
|                  |              |             |                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                     |
| _                |              | 38          | 3,02                   | 0,2568            | 24,60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16,87                                                                                                                                                                                                                                             | 1,2271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                       |
| 1                | 8            |             | <b>493,</b> 5°C        | $p_0' = 105$      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $k_0' \cdot 10^2 = 372$                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                       |
| -                |              |             |                        | 0,0762            | 13,22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 181 4                                                                                                                                                                                                                                             | 2,2586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8000                                                                                                                                                                |
| _                |              | Я           | 6.99                   |                   | 10,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |
| _                |              | 8<br>14     | 6,9 <b>9</b><br>4 44   |                   | 1951                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 212,8 162,4 66,9 19,1 9,21 $k'_0 = 453 \cdot 10^{-3}$ 236,8 166,3 84,60 49,26 $k'_0 = 281,6 \cdot 10^{-3}$ 285,7 138,6 72,1 44,78 23,45 7,15 $k'_0 = 287,5 \cdot 10^{-3}$ 227,1 111,9 80,47 53,50 26,54 16,87 $k'_0 \cdot 10^2 = 372$ 181,4 90,67 | ] U574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.200                                                                                                                                                                 |
| -                |              | 14          | 4,44                   | 0,1333            | 19.51<br>22.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                   | 1,957 <b>4</b><br>1,7940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                       |
| -                |              |             |                        |                   | 19.51<br>22,93<br>31,61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 90,67<br><b>6</b> 2,2 <b>3</b><br>17,68                                                                                                                                                                                                           | 1,9574<br>1,7940<br>1 <b>,2475</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,929                                                                                                                                                                 |
|                  | <br>- Experi | 5           | Experiment Number    P | Experiment Number | Preparation 2.  Experiment Number    p v p/p'_0    4 t=495°C p'_0=    8 6,48 0,0620     13 5,21 0,1008     18 3,17 0,1395     24 2,14 0,1860     30 1,85 0,2326     5 t=494°C p'_0=    10 6,86 0,0775     16 5,15 0,1240     22 3,38 0,1705     28 2,58 0,2170     28 2,58 0,2170     6 t-498,5°C p'_0=    8 12,99 0,0523     16 7,59 0,1046     22 5,23 0,1438     28 4,20 0,1830     34 3,41 0,2222     40 2,81 0,2614     7 t=498,5°C p'_0=    8 10,76 0,0541     14 6,67 0,0946     20 5,43 0,1351     26 4,40 0,1757     32 3,45 0,2162 | Preparation 2.  Experiment  Number    p v p/p_0                                                                                                                                                                                                   | Experiment Number    p v   p/p'_0   0.10^3   J'.10^3   100     4   t=495°C   p'_0=129   k'_0=453.10^{-2}     8   6,48   0,0620   14,48   212,8     13   5,21   0,1008   17,26   162,4     18   3,17   0,1395   27,14   66,9     24   2,14   0,1860   38,04   19,1     30   1,85   0,2326   41,48   9,21     5   t=494°C   p'_0=129   k'_0=453.10^{-3}     10   6,86   0,0775   13,45   236,8     16   5,15   0,1240   17,01   166,3     22   3,38   0,1705   24,54   84,60     28   2,58   0,2170   30,35   49,26     6   t=498,5°C   p'_0=153   k'_0=281,6.10^{-3}     8   12,99   0,0523   7,30   285,7     16   7,59   0,1046   11,80   138,6     22   5,23   0,1438   16,36   72,1     28   4,20   0,1830   19,45   44,78     34   3,41   0,2222   22,81   23,45     40   2,81   0,2614   26,28   7,15     7   t=498,5°C   p'_0=148   k'_0=287,5.10^{-3}     8   10,76   0,0541   8,79   227,1     14   6,67   0,0946   13,57   111,9     20   5,43   0,1351   15,93   80,47     26   4,40   0,1757   18,73   53,50     32   3,45   0,2162   22,72   26,54 | Preparation 2.   Cover Page Title  Experiment Number  p v p/p'_0                                                                                                      |


Roman


Even

| _                 | Expe     | rimen  | t                |               | Page                     | One Tit                | tinued] *<br>le                       |                                  | ļ                                |                                       |
|-------------------|----------|--------|------------------|---------------|--------------------------|------------------------|---------------------------------------|----------------------------------|----------------------------------|---------------------------------------|
| -<br>             | Numb     |        | р                | v             | $p/p_0'$                 | Ф·10²                  | <b>J</b> ′·10² 1                      | o g(J'10²)1/                     | $\log^2(p/p_0')$                 |                                       |
|                   |          | 9      | t=               | 498°C         | $p_0'=110 \text{ m}$     | ım Hg                  | $k_0' \cdot 10^3 = 229,$              | 6                                |                                  |                                       |
| _                 |          |        | 8                | 11,33         | 0,0727                   | 8,18                   | 180,7                                 | 2,2569                           | 0,7715                           |                                       |
| _                 |          |        | 14               | 8,28          | 0,1273                   | 10,54                  | 117,8                                 | 2,0712                           | 1,248<br>1,82 <b>4</b>           |                                       |
|                   |          | 1      | 20               | 6,01          | 0,1818                   | 13,61                  | 68,70                                 | 1,8370                           | 2,548                            |                                       |
| _                 |          |        | 26               | 4,10<br>3.72  | 0,2364                   | 18,62                  | 23,30                                 | 1,3674                           | 3,477                            |                                       |
| _                 |          |        | 32<br>38         | 3,72<br>2,93  | 0,2909<br>0,3455         | 19,06<br>22,33         | 20,46<br>2,82                         | 1,3109<br>0,4502                 | 4,692                            |                                       |
| _                 | -        | 10     | ·<br><del></del> | 498°C         | p <sub>0</sub> '=145 mn  | E                      | k' <sub>0</sub> ·10³=289,8            | <del></del>                      |                                  | •                                     |
| _                 |          | 10     |                  |               |                          |                        |                                       |                                  |                                  |                                       |
|                   |          | 1      | 8<br>. 14        | 11,23<br>6,95 | 0,0552<br>0,0965         | 8,41<br>13,00          | <b>244,</b> 6<br>122,9                | <b>2,</b> 3885<br><b>2,</b> 0895 | 0,631 <b>9</b><br>0,96 <b>99</b> |                                       |
|                   |          |        | 20               | 5,12          | 0,0903<br>0,13 <b>79</b> | 16,84                  | 72,09                                 | 2,0895<br>1,8578                 | 1,351                            |                                       |
|                   |          | 2      | 26               | 4,03          | 0,1793                   | 20,36                  | 42,34                                 | 1,6267                           | 1,795                            |                                       |
|                   |          | 1.     | 32               | 3,33          | 0,2207                   | 23,40                  | 23,85                                 | 1,3775                           | 2,322                            |                                       |
| _                 |          |        | 38               | 2,78          | 0,2621                   | 26,54                  | 9,19                                  | 0,9633                           | 2,958                            |                                       |
| _                 |          | 11     | t=               | 498°C         | $p_0' = 134 \text{ mr}$  | n Hg                   | $k_0' \cdot 10^3 = 276,4$             | :                                |                                  |                                       |
|                   |          |        | 8                | 10,44         | 0,0597                   | 9,01                   | 206,8                                 | 2,3156                           | 0,6675                           |                                       |
|                   |          | -      | 14               | 7,59          | 0,1045                   | 11,80                  | 134,2                                 | 2,1277                           | 1,039                            |                                       |
| _                 |          |        | 20               | 5,71          | 0,1492                   | 14,90                  | 85,50                                 | 1,9320                           | 1,465                            |                                       |
|                   |          | 1      | 26<br>32         | 4,09<br>3,75  | 0,1940<br>0 <b>,2388</b> | 19,70<br><b>20,3</b> 0 | <b>4</b> 0,3 <b>0</b><br><b>36,16</b> | 1,6053<br>1,55 <b>82</b>         | 1,972                            |                                       |
|                   |          |        | 38               | 3,06          | 0,2836                   | 23,41                  | 18,67                                 | 1,3502                           | 2,585<br>3,839                   |                                       |
|                   |          | •      | •                |               | •                        | i                      | -                                     |                                  |                                  | 1                                     |
|                   |          |        |                  |               |                          |                        |                                       |                                  |                                  |                                       |
| _                 |          |        |                  |               |                          |                        |                                       |                                  |                                  |                                       |
| -                 |          |        |                  |               | 21 -                     | $= k'(p'_0 -$          | _ n)                                  |                                  |                                  |                                       |
|                   |          |        |                  |               | 0 -                      | _ N (P0 -              | - P)                                  |                                  |                                  | (6)                                   |
|                   |          |        |                  |               |                          | ļ                      |                                       |                                  |                                  |                                       |
| Va1ı              | ies o    | f po'  | and k            | thus          | obtained                 | would t                | hen apply                             | in furthe                        | er calcula                       | ations                                |
|                   |          | •      |                  |               | of the ne                |                        |                                       |                                  |                                  |                                       |
|                   |          |        |                  |               |                          |                        | r                                     |                                  |                                  |                                       |
|                   | Fi       | gure   | 3 show           | s the m       | ethod of                 | graphic                | al determi                            | nation of                        | f the valu                       | ues of                                |
| ₽ <sub>0</sub> '. |          |        |                  |               |                          | -                      |                                       |                                  |                                  |                                       |
|                   | ፕъ.      | 2 7000 | u1+c -           | f comto       | in maggu <del>r</del>    | oments                 | were recal                            | culated :                        | n accomdo                        | ncc                                   |
|                   |          | nulas  |                  |               |                          | ,                      | Tables 1-                             |                                  |                                  |                                       |
|                   |          |        | - temm           | erature       | at which                 | the ex                 | periment w                            | as carrie                        | ed out                           |                                       |
| <u> </u>          | <b>.</b> |        |                  |               |                          |                        |                                       |                                  |                                  | · · · · · · · · · · · · · · · · · · · |
| ∸ır.              | Not      | e: C   | ommas            | indicat       | e decimal                | points                 | •                                     |                                  |                                  |                                       |

Roman

Even



